
 

Experiment No   : M4  

Name of Experiment: Two Dimensional Collisions 

Objective: To examine conservation of momentum and energy for elastic collision in two 

dimensions. To demonstrate experimentally that momentum is a vector and energy is a scaler 

quantity. 

Keywords: Velocity, kinetic energy, conservative force, conservation of energy, conservation of 

momentum, vector-scalar quantities 

Theoretical Information:  

Conservation of Mechanical Energy  

Energy is a scalar quantity. It can be divided into two forms, kinetic and potential. In the following 

equations, potential energy and kinetic energy are shown with U and K, respectively. Before the 

collision is represented by “initial”, and after collision is represented by “final” subscripts. According 

to the work-energy theorem, the change in kinetic energy of an object is equal to work that has done 

by the net force acting on the object. 

𝑊 = 𝐾𝑓𝑖𝑛𝑎𝑙 − 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙 4.1 

Let’s assume that only conservative forces are generating the work. The work done by conservative 

forces is independent of the path and equal to the negative of the potential energy change. When these 

are combined together, 

𝑊 = 𝐾𝑓𝑖𝑛𝑎𝑙 − 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙=-𝑈𝑓𝑖𝑛𝑎𝑙 − 𝑈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 4.2 

is obtained. When this last equation can be written as, 

𝐾𝑓𝑖𝑛𝑎𝑙 + 𝑈𝑓𝑖𝑛𝑎𝑙=𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 4.3 

is obtained. Here, the left side of the equation represents the total energy after the collision whereas 

the right side of the equation represents the total energy before the collision. So, as E= K + U; 

initialfinal EE   4.4 

is obtained. If only conservative forces are generating the work, the mechanic energy of the system 

is also conserved, thus it is independent of time. The equation 4.4 represents the mechanic energy 

conservation in 1,2 or 3 dimensions. This equation shows the relationship between the velocity and 

position of the object. During the movement of the object, both kinetic and potential energy will 

change but their sum will be constant. The law of conservation of the energy states that in an insulated 

system total energy of the system is conserved. It is possible to write this statement in form of, 

𝑑𝐸

𝑑𝑡
= 0 ⇒ 𝐸 ≡ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 4.5 

 

Conservation of Momentum 

Momentum P


, of an object with mass m and velocity v


 is defined by the multiplication of mass and 

velocity vector. 

𝑃⃗ = 𝑚𝑣  4.6 

Momentum is a vector quantity. Newton’s Second Law can be written as, 

∑𝐹 = 𝑚𝑎 = 𝑚
𝑑(𝑚𝑣 )

𝑑𝑡
=

𝑑𝑃⃗ 

𝑑𝑡
 4.7 



 

Let us consider of a system with zero net force acting on it. 

∑𝐹 = 0 =
𝑑𝑃⃗ 

𝑑𝑡
 4.8 

That means the change of momentum over time is zero, i.e. momentum is time independent. In other 

words, the momentum of the system is conserved. 

𝑃⃗ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑃⃗ 𝑓𝑖𝑛𝑎𝑙 4.9 

Let’s assume only one component of force, for examples that Fy is zero. Then, let’s write the 

Newton’s Law in form of components: 

𝐹𝑥 =
𝑑𝑃𝑥

𝑑𝑡
; 𝐹𝑦 =

𝑑𝑃𝑦

𝑑𝑡
= 0; 𝐹𝑧 =

𝑑𝑃𝑧

𝑑𝑡
 4.10 

As it can be seen, the solution of the first and the third equation is time independent. However the 

derivation of Py is zero, in other words Py is constant. Thus y-component of the momentum is 

conserved  

In a closed system of particles, i.e. no external force acting on the system and particles only interact 

with each other, total momentum of the system is conserved. (See Problem 1). Here the total 

momentum of the system and the vector sum of the momentums should be understood.  

N particle system of masses m1 , m2 ,....... mN  can be generalized according to the statement above. 

Total momentum of such system composed of particles in a given time can be written as: 

𝑃⃗ 𝑡𝑜𝑡 = 𝑃⃗ 1 + 𝑃⃗ 2+. . . . . . +𝑃⃗ 𝑁 4.11 

Here 𝑃⃗ 1=m1𝑣 1 ,𝑃⃗ 2=m2𝑣 2,…  can be written. 

The summation in the equation 2.11 is a vector summation. In this case, when equation 4.3 

generalized; 

∑𝐹 𝑒𝑥𝑡 =
𝑑𝑃⃗ 𝑡𝑜𝑡

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑃⃗ 1 + 𝑃⃗ 2+. . . . . . +𝑃⃗ 𝑁) 4.12 

will be obtained. 

Here 𝐹 ext, defines the net external force acting on the system of particles. In other words, the external 

force is different from interaction force of the particles between them. These external forces can be 

friction or gravitation. Thus if there is no external force acting on the system of particles, the total 

momentum of the system will be conserved. So; 

𝑑𝑃⃗ 𝑡𝑜𝑡

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑃⃗ 1 + 𝑃⃗ 2+. . . . . . +𝑃⃗ 𝑁) = 0 ⇒ 𝑃⃗ 𝑡𝑜𝑡 = 𝑃⃗ 1 + 𝑃⃗ 2+. . . . . . +𝑃⃗ 𝑁 ≡ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 4.13 

The equation above is also a vector quantity. In a system of particles with no net force (or in an 

isolated system) , total momentum of the system in any given time will be the same. 

Quantities that does not change under certain conditions such as energy and momentum are defined 

as constants of the motion. These constants simplify the solution of motion equations. 

Momentum and energy conservation expressions of elastic collision of two particles in a plane are 

defined as follows; 
 



 

Momentum-horizantal: 𝑚1𝑣 1𝑥 + 𝑚2𝑣 2𝑥 = 𝑚1𝑣 ′1𝑥 + 𝑚2𝑣 ′2𝑥 4.14 

Momentum-vertical: 𝑚1𝑣 1𝑦 + 𝑚2𝑣 2𝑦 = 𝑚1𝑣 ′1𝑦 + 𝑚2𝑣 ′2𝑦 4.15 

Kinetic energy : 
1
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1
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2 4.16 

Center of mass (CM) is the other quantity that is compared and investigated in this experiment. Center 

of mass of a uniform cube, cylinder, sphere and other symmetrical objects is its geometric center. 

Center of mass of the two objects of the same mass will be located at the midpoint of the line that 

connects their geometric centers. However, if one of the objects is heavier than the other, then the 

center of mas will shift towards the heavier one.  

The mass should be redefined for various mass distributions. The position vector, 𝑅⃗  of system of N 

partical with position vectors 𝑟 1,𝑟 2,....., 𝑟 𝑁 and masses m1, m2,....,mN is defined as in equation 4.17. 

Here, 𝑟  vectors are position vectors of each particle in the coordinate system whereas 𝑅⃗  represents 

the position vector of the center of mass. 

𝑅⃗ =
𝑚1𝑟 1 + 𝑚2𝑟 2+. . . +𝑚𝑁𝑟 𝑁

𝑚1 + 𝑚2+. . . +𝑚3
 4.17 

If the position of particles changes with time, position of the center of mass also changes the vector 

changing ratio of center of mas can be considered as the velocity of (CM). 

𝑣 𝐶𝑀 =
𝑑𝑅⃗ 

𝑑𝑡
 4.18 

If the derivative of both sides of the equation 2.17 will be taken for constant mass particles; 

𝑅⃗ ̇ =
𝑚1𝑟 ̇1 + 𝑚2𝑟 ̇2+. . . +𝑚𝑁𝑟 ̇𝑁

𝑚1 + 𝑚2+. . . +𝑚𝑁
⇒ 𝑉⃗ 𝐶𝑀 =

𝑚1𝑣 1 + 𝑚2𝑣 2+. . . +𝑚𝑁𝑣 𝑁
𝑚1 + 𝑚2+. . . +𝑚𝑁

 4.19 

Equation (4.19) will be obtained. The dots on of the equation 4.19 are annotation of derivative with 

respect to time which is the velocity of the mass. When these derived equations are adapted to our 

two-disc system in the experiment; 

𝑅⃗ =
𝑚1𝑟 1 + 𝑚2𝑟 2

𝑚1 + 𝑚2
 4.22 

and the masses in the equation 4.22 simplified because the mass of the discs are equal (m1=m2=m); 

equation 4.23 will be obtained.  

𝑅⃗ =
𝑚𝑟 1 + 𝑚𝑟 2

𝑚 + 𝑚
⇒ 𝑅⃗ =

𝑚(𝑟 1 + 𝑟 2)

2𝑚
⇒ 𝑅⃗ =

𝑟 1 + 𝑟 2
2

 4.23 

In that case; if the derivative of position vectors with respect to time will be taken, the velocity of the 

CM will be:  

𝑉⃗ 𝐶𝑀 =
𝑣 1 + 𝑣 2

2
 4.24 

Equation 4.24 has important outcomes. It means that while momentum is conserved, the velocity of 

CM is constant (constant velocity, no change in magnitude and direction.). Thus the center of mass 

of an isolated system with conserved momentum always moves with constant velocity in linear 

motion. Thus of our two-disc system should be 𝑉 ⃗⃗  ⃗
CM
initial = 𝑉⃗ CM

final for before and after the collision. 

 


